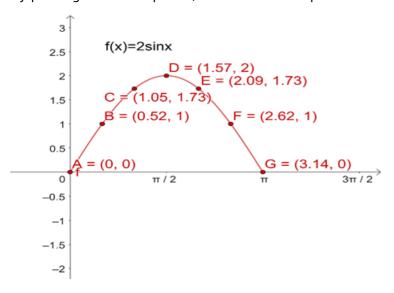
6. Graphs of Trigonometric Functions

Exercise 6.1

1 A. Question

Sketch the graphs of the following functions :

$$f(x) = 2 \sin x$$
, $0 \le x \le \pi$


Answer

We know that $g(x) = \sin x$ is a periodic function with period π .

 \therefore f (x) = 2 sin x is a periodic function with period π . So, we will draw the graph of f (x) = 2 sin x in the interval [0, π]. The values of f (x) = 2 sin x at various points in [0, π] are listed in the following table:

Х	0 (A)	п/6 (В)	п/3 (С)	п/2 (D)	2п/3 (E)	5n/6 (F)	п (G)
F(x) = 2 sin x	0	1	$\sqrt{3} = 1.73$	2	$\sqrt{3} = 1.73$	1	0

By plotting the above points, we obtain the required curve.

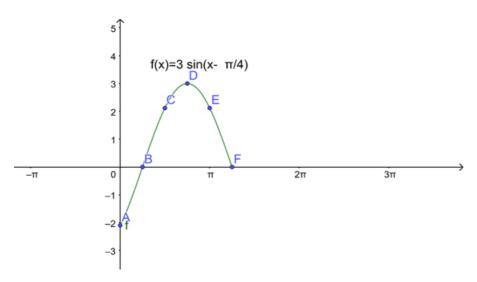
1 B. Question

Sketch the graphs of the following functions:

$$g(x) = 3 \sin\left(x - \frac{\pi}{4}\right), 0 \le x \le \frac{5\pi}{4}$$

Answer

We know that if f(x) is a periodic function with period T, then f(ax + b) is periodic with period T/|a|.

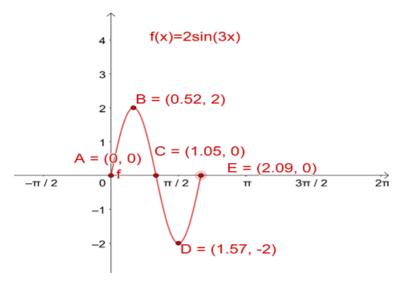

 $g(x) = 3\sin(x - \frac{\pi}{4})$ is a periodic function with period π . So, we will draw the graph of $g(x) = 3\sin(x - \frac{\pi}{4})$ in the interval $[0, 5\pi/4]$. The values of $g(x) = 3\sin(x - \frac{\pi}{4})$ at various points in $[0, 5\pi/4]$ are listed in the following table:

Х	0 (A)	п/4 (B)	п/2 (C)	3п/4 (D)	п (Е)	5n/4 (F)
$g(x) = 3 \sin \left(x - \frac{\pi}{4}\right)$	_,,	0	$\frac{3}{\sqrt{2}} = 2.12$	3	$\frac{3}{\sqrt{2}} = 2.12$	0

1 C. Question

Sketch the graphs of the following functions:

$$h(x) = 2 \sin 3x, 0 \le x \le 2 \pi/3$$


Answer

We know that $g(x) = \sin x$ is a periodic function with period 2π .

 \therefore h (x) = 2 sin 3x is a periodic function with period $2\pi/3$. So, we will draw the graph of h (x) = 2 sin 3x in the interval [0, $2\pi/3$]. The values of h (x) = 2 sin 3x at various points in [0, $2\pi/3$] are listed in the following table:

Х	0(A)	п/6(В)	п/3 (С)	п/2 (D)	2п/3 (E)
H(x) = 2 sin 3x	0	2	0	-2	0

By plotting the above points, we obtain the required curve.

1 D. Question

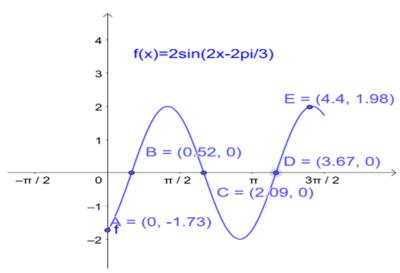
Sketch the graphs of the following functions:

$$\phi(x) = 2\sin\left(2x - \frac{\pi}{3}\right), 0 \le x \le \frac{7\pi}{5}$$

Answer

We know that if f(x) is a periodic function with period T, then f(ax + b) is periodic with period T/[a].

 $\dot{\phi}(x) = 2\sin(2x - \frac{\pi}{3})$ is a periodic function with period π . So, we will draw the graph of $\phi(x) = 2\sin(2x - \frac{\pi}{3})$ in the interval [0, $7\pi/5$]. The values of $\phi(x) = 2\sin(2x - \frac{\pi}{3})$ at various points in [0,



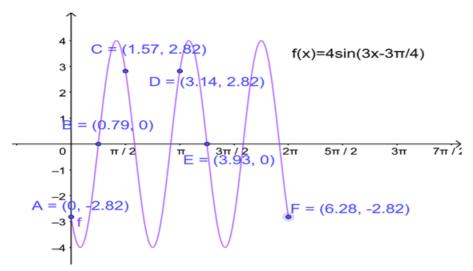
 $7\pi/5$] are listed in the following table:

Х	0	п/6	2п/3	7п/6	7п/5
$\phi(x) = 2\sin\left(2x - \frac{\pi}{3}\right)$	-√3 = -1.73	0	0	0	1.98

By plotting the above points, we obtain the required curve.

1 E. Question

Sketch the graphs of the following functions:


$$\psi(x) = 4 \sin 3\left(x - \frac{\pi}{4}\right), 0 \le x \le 2\pi$$

Answer

We know that if f(x) is a periodic function with period T, then f(ax + b) is periodic with period T/|a|.

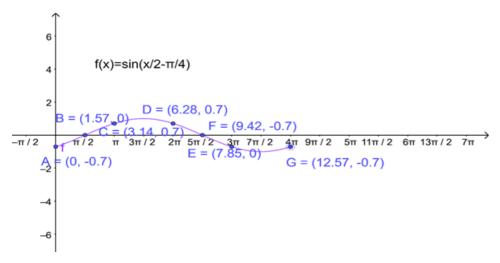
 $\psi(x) = 4\sin 3(x - \frac{\pi}{4})$ is a periodic function with period 2π . So, we will draw the graph of $\psi(x) = 4\sin 3(x - \frac{\pi}{4})$ in the interval $[0, 2\pi]$. The values of $\psi(x) = 4\sin 3(x - \frac{\pi}{4})$ at various points in $[0, 2\pi]$ are listed in the following table:

Х	0	п/4	п/2	П	5п/4	2п
$\psi(x) = 4\sin 3\left(x - \frac{\pi}{4}\right)$	-2√2 = -2.82	0	2√2 = 2.82	2√2 =2.82	0	-2√2 = -2.82

1 F. Question

Sketch the graphs of the following functions:

$$\theta(x) = \sin\left(\frac{x}{2} - \frac{\pi}{4}\right), 0 \le x \le 4\pi$$


Answer

We know that if f(x) is a periodic function with period T, then f(ax + b) is periodic with period T/|a|.

 $\theta(x) = \sin(\frac{x}{2} - \frac{\pi}{4})$ is a periodic function with period 4π . So, we will draw the graph of $\theta(x) = \sin(\frac{x}{2} - \frac{\pi}{4})$ in the interval $[0, 4\pi]$. The values of $\theta(x) = \sin(\frac{x}{2} - \frac{\pi}{4})$ at various points in $[0, 4\pi]$ are listed in the following table:

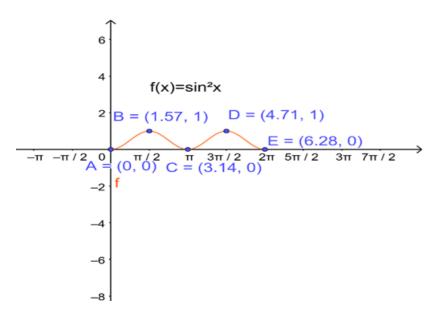
X	0	п/2	п	2п	5п/2	3п	4п
$\theta(x) = \sin\left(\frac{x}{2} - \frac{\pi}{4}\right)$	-0.7	0	1/√2 = 0.7	1/√2 = 0.7	0	-1/√2 = -0.7	-1/√2 =-0.7

By plotting the above points, we obtain the required curve.

1 G. Question

Sketch the graphs of the following functions:

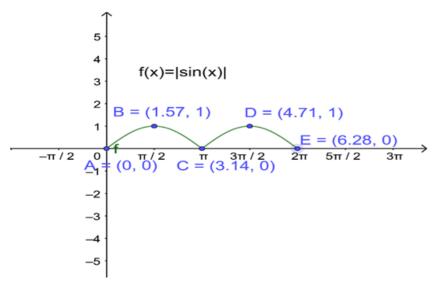
$$u(x) = \sin^2 x$$
, $0 \le x \le 2\pi v(x) = |\sin x|$, $0 \le x \le 2\pi$


Answer

We know that $g(x) = \sin x$ is a periodic function with period π .

 \therefore u (x) = $\sin^2 x$ is a periodic function with period 2π . So, we will draw the graph of u (x) = $\sin^2 x$ in the interval [0, 2π]. The values of u (x) = $\sin^2 x$ at various points in [0, 2π] are listed in the following table:

Х	0	п/2	п	3п/2	2п
$U(x) = \sin^2 x$	0	1	0	1	0



Then,

 \therefore u (x) = $|\sin x|$ is a periodic function with period 2π . So, we will draw the graph of u (x) = $|\sin x|$ in the interval $[0, 2\pi]$. The values of u (x) = $|\sin x|$ at various points in $[0, 2\pi]$ are listed in the following table:

Х	0	п/2	П	3п/2	2п
$U(x) = \sin x $	0	1	0	1	0

By plotting the above points, we obtain the required curve.

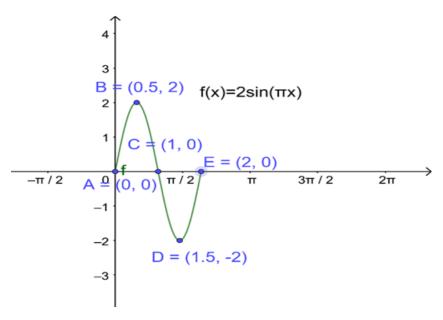
1 G. Question

Sketch the graphs of the following functions :

$$f(x) = 2 \sin \pi x, 0 \le x \le 2.$$

Answer


We know that g (x) = $\sin x$ is a periodic function with period 2π .


 \therefore f (x) = 2 sin π x is a periodic function with period 2. So, we will draw the graph of f (x) = 2 sin π x in the interval [0, 2]. The values of f (x) = 2 sin π x at various points in [0, 2] are listed in the following table:

X	0	1/2	1	3/2	2
f(x) = 2 sin πx	0	2	0	-2	0

2 A. Question

Sketch the graphs of the following pairs of functions on the same axes :

$$f(x) = \sin x$$
, $g(x) = \sin \left(x + \frac{\pi}{4}\right)$

Answer

We observe that the functions $f(x) = \sin x$ and $g(x) = \sin (x + \pi/4)$ are periodic functions with periods 2π and $7\pi/4$.


The values of these functions are tabulated below:

Values of f (x) = $\sin x$ in [0, 2π]

Х	0	п/2	П	3п/2	2п
$f(x) = \sin x$	0	1	0	-1	0

Values of g (x) = $\sin (x + \pi/4) \sin [0, 7\pi/4]$

X	0	п/4	3п/4	5п/4	7п/4
g(x) = $\sin\left(x + \frac{\pi}{4}\right)$	$1/\sqrt{2} = 0.7$	1	0	-1	0
4)					

2 B. Question

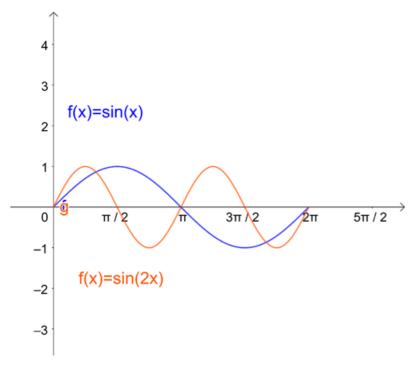
Sketch the graphs of the following pairs of functions on the same axes :

$$f(x) = \sin x$$
, $g(x) = \sin 2x$

Answer

We observe that the functions $f(x) = \sin x$ and $g(x) = \sin 2x$ are periodic functions with periods 2π and π .

The values of these functions are tabulated below:


Values of f (x) = $\sin x$ in [0, 2π]

X	0	п/2	П	3п/2	2п
$f(x) = \sin x$	0	1	0	-1	0

Values of g (x) = $\sin(2x)$ in [0, π]

2	X	0	п/4	п/2	3п/4	П	5n/4	3п/2	7п/4	2п
	$g(x) = \sin(2x)$	0	1	0	-1	0	1	0	-1	0

By plotting the above points, we obtain the required curve.

2 C. Question

Sketch the graphs of the following pairs of functions on the same axes :

$$f(x) = \sin 2x$$
, $g(x) = 2 \sin x$

Answer

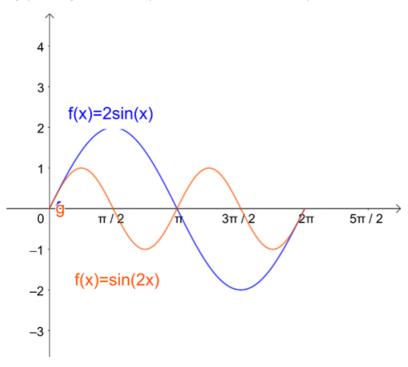
We observe that the functions $f(x) = \sin 2x$ and $g(x) = 2 \sin x$ are periodic functions with periods π and π .

The values of these functions are tabulated below:

Values of $f(x) = \sin(2x)$ in $[0, \pi]$

x	0	п/4	п/2	3п/4	П	5п/4	3п/2	7п/4	2п
$f(x) = \sin(2x)$	0	1	0	-1	0	1	0	-1	0

Values of g (x) = $2 \sin x \text{ in } [0, \pi]$



Х	0	п/2	п	3п/2	2п
g(x) = 2 sin x	0	1	0	-1	0

By plotting the above points, we obtain the required curve.

2 D. Question

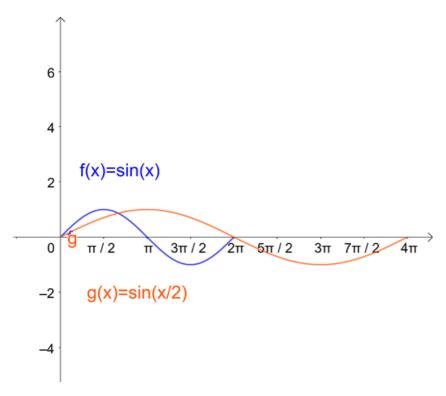
Sketch the graphs of the following pairs of functions on the same axes :

$$f(x) = \sin \frac{x}{2}, g(x) = \sin x$$

Answer

We observe that the functions $f(x) = \sin x/2$ and $g(x) = \sin x$ are periodic functions with periods π and 2π .

The values of these functions are tabulated below:


Values of f (x) = $\sin x/2$ in [0, π]

X	0	П	2п	3п	4п
f(x) = sin x/2	0	1	0	-1	0

Values of g (x) = $\sin(x)$ in [0, 2π]

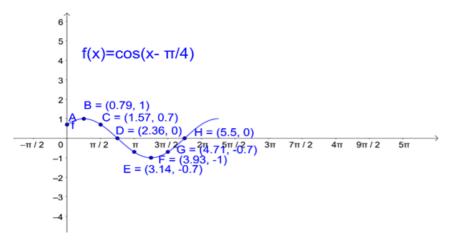
Х	0	п/2	П	3п/2	2п	5n/2	3п	7п/2	4п
g(x) = sin (2x)	0	1	0	-1	0	1	0	-1	0

Exercise 6.2

1 A. Question

Sketch the graphs of the following trigonometric functions :

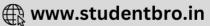
$$f(x) = \cos\left(x - \frac{\pi}{4}\right)$$


Answer

We know that $g(x) = \cos x$ is a periodic function with period 2π .

 \therefore f (x) = cos (x - π /4) is a periodic function with period π . So, we will draw the graph of f (x) = cos (x - π /4) in the interval [0, π]. The values of f (x) = cos (x - π /4) at various points in [0, π] are listed in the following table:

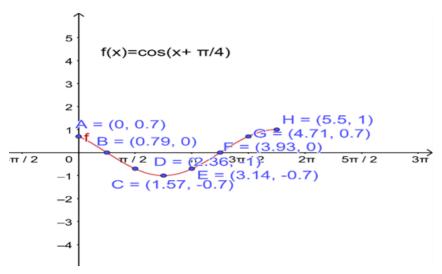
X	0	п/4	п/2	3п/4	п	5п/4	3п/2	7п/4
$f(x) = \cos$	1/√2	1	1/√2	0	-1/√2	-1	-1/√2	0
(x - п/4)	= 0.7		= 0.7		= -0.7		= -0.7	


By plotting the above points, we obtain the required curve.

1 B. Question

Sketch the graphs of the following trigonometric functions :

$$g(x) = \cos\left(x + \frac{\pi}{4}\right)$$


Answer

We know that f (x) = $\cos x$ is a periodic function with period 2π .

 \therefore g (x) = cos (x + π /4) is a periodic function with period π . So, we will draw the graph of g (x) = cos (x + π /4) in the interval [0, π]. The values of g (x) = cos (x + π /4) at various points in [0, π] are listed in the following table:

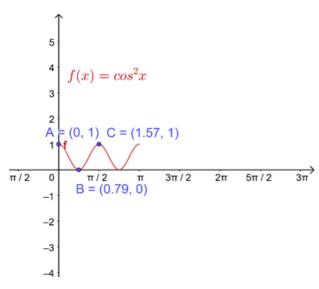
X	0	п/4	п/2	3п/4	п	5п/4	3п/2	7п/4
g (x) = cos	1/√2	0	-1/√2 =	-1	-1/√2	0	1/√2	1
(x + n/4)	= 0.7		-0.7		= -0.7		= 0.7	

By plotting the above points, we obtain the required curve.

1 C. Question

Sketch the graphs of the following trigonometric functions:

$$h(x) = \cos^2 2x$$


Answer

We know that $f(x) = \cos x$ is a periodic function with period 2π .

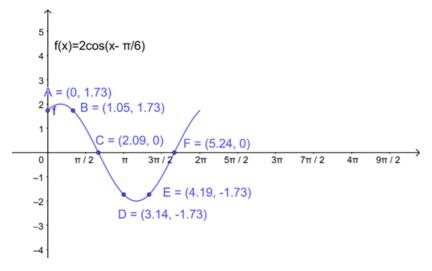
 \therefore h (x) = $\cos^2 2x$ is a periodic function with period π . So, we will draw the graph of h (x) = $\cos^2 2x$ in the interval [0, π]. The values of h (x) = $\cos^2 2x$ at various points in [0, π] are listed in the following table:

Х	0	п/4	п/2	3п/4	П	5п/4	3п/2
h (x) = cos ² 2x	1	0	1	0	1	0	1

1 D. Question

Sketch the graphs of the following trigonometric functions :

$$\phi(x) = 2\cos\left(x - \frac{\pi}{6}\right)$$


Answer

We know that $f(x) = \cos x$ is a periodic function with period 2π .

 $\therefore \varphi(x) = 2\cos(x - \pi/6)$ is a periodic function with period π . So, we will draw the graph of $\varphi(x) = 2\cos(x - \pi/6)$ in the interval $[0, \pi]$. The values of $\varphi(x) = 2\cos(x - \pi/6)$ at various points in $[0, \pi]$ are listed in the following table:

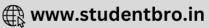
X	0	п/3	2п/3	п	4п/3	5п/3
φ (x) = 2cos	√3 =	√3 =	0	-√3 =	-√3	0
(x - п/6)	1.73	1.73		-1.73	= -1.73	

By plotting the above points, we obtain the required curve.

1 E. Question

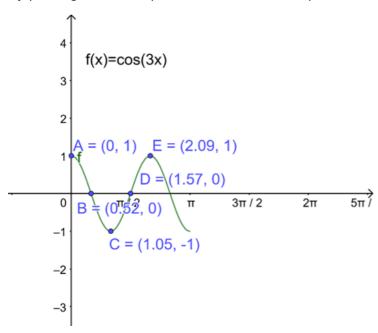
Sketch the graphs of the following trigonometric functions :

$$\psi(x) = \cos 3x$$


Answer

We know that $f(x) = \cos x$ is a periodic function with period 2π .

 ψ (x) = cos (3x) is a periodic function with period 2π/3. So, we will draw the graph of ψ (x) = cos (3x) in the



interval [0, $2\pi/3$]. The values of ψ (x) = cos (3x) at various points in [0, $2\pi/3$] are listed in the following table:

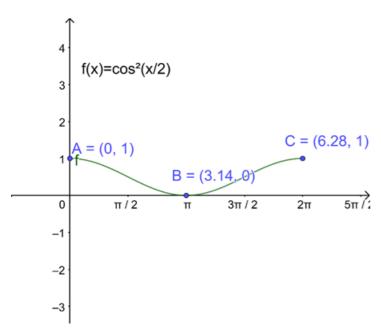
Х	0	п/6	п/3	п/2	2п/3	5п/6
$\psi(x) = \cos(3x)$	1	0	-1	0	1	0

By plotting the above points, we obtain the required curve.

1 F. Question

Sketch the graphs of the following trigonometric functions :

$$u(x) = \cos^2 \frac{x}{2}$$


Answer

We know that $f(x) = \cos x$ is a periodic function with period 2π .

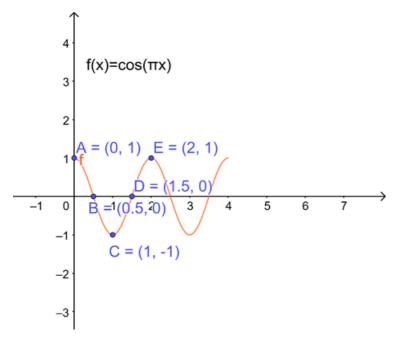
 \therefore u (x) = $\cos^2(x/2)$ is a periodic function with period π . So, we will draw the graph of u (x) = $\cos^2(x/2)$ in the interval [0, π]. The values of u (x) = $\cos^2(x/2)$ at various points in [0, π] are listed in the following table:

X	0	п	2п	3п
$u(x) = cos^2(x/2)$	1	0	1	0

1 G. Question

Sketch the graphs of the following trigonometric functions :

$$f(x) = \cos \pi x$$


Answer

We know that g (x) = $\cos x$ is a periodic function with period 2π .

 \therefore f (x) = cos (π x) is a periodic function with period 2. So, we will draw the graph of f (x) = cos (π x) in the interval [0, 2]. The values of f (x) = cos (π x) at various points in [0, 2] are listed in the following table:

Х	0	1/2	1	3/2	2	5/2
$f(x) = \cos(\pi x)$	1	0	-1	0	1	0

By plotting the above points, we obtain the required curve.

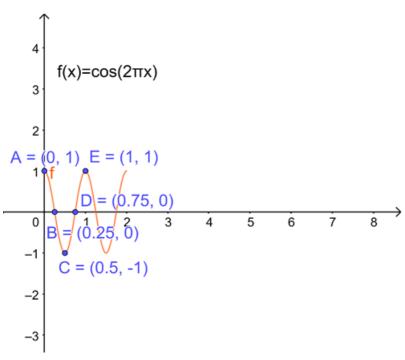
1 H. Question

Sketch the graphs of the following trigonometric functions :

$$g(x) = \cos 2\pi x$$

Answer

We know that $f(x) = \cos x$ is a periodic function with period 2π .



 \therefore g (x) = cos (2 π x) is a periodic function with period 1. So, we will draw the graph of g (x) = cos (2 π x) in the interval [0, 1]. The values of g (x) = cos (2 π x) at various points in [0, 1] are listed in the following table:

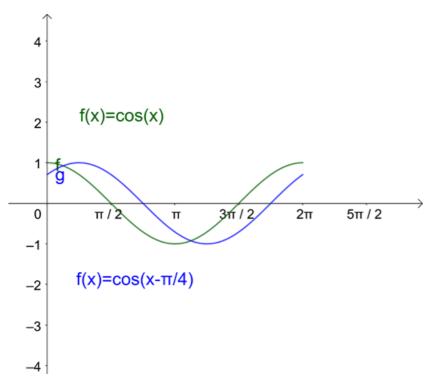
X	0	1/4	1/2	3/4	1	5/4	3/2	7/4	2
g (x) = cos (2πx)	1	0	-1	0	1	0	-1	0	1

By plotting the above points, we obtain the required curve.

2 A. Question

Sketch the graphs of the following curves on the same scale and the same axes :

$$y = \cos x$$
 and $y = \cos \left(x - \frac{\pi}{4}\right)$


Answer

We observe that the functions $y = \cos x$ and $y = \cos (x - \pi/4)$ are periodic functions with periods π and π .

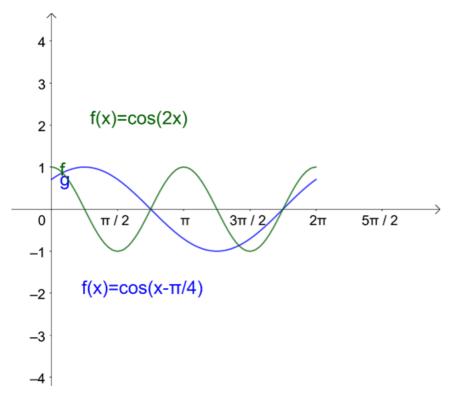
The values of these functions are tabulated below:

Х	0	п/4	п/2	3п/4	п	5п/4	3п/2	7п/4
y = cos x	1	1/√2 = 0.7	0	-1/√2 = -0.7	-1	-1/√2 = -0.7	0	1
y = cos (x-п/4)	1/√2 = 0.7	1	1/√2 = 0.7	0	-1/√2 = -0.7	-1	-1/√2 = -0.7	0

2 B. Question

Sketch the graphs of the following curves on the same scale and the same axes :

$$y = \cos 2x$$
 and $y = \cos \left(x - \frac{\pi}{4}\right)$


Answer

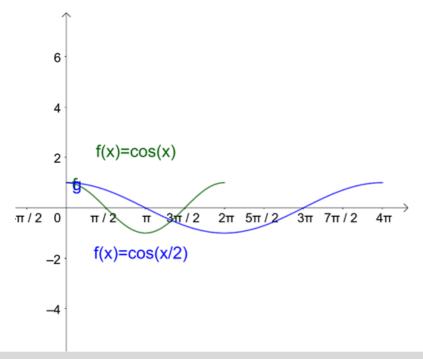
We observe that the functions $y = \cos 2x$ and $y = \cos 2(x - \pi/4)$ are periodic functions with periods π and π .

The values of these functions are tabulated below:

X	0	п/4	п/2	3п/4	п	5п/4	3п/2	7п/4
y = cos 2x	1	0	-1	0	1	0	-1	0
$y = \cos 2(x-\pi/4)$	0	1	0	-1	0	1	0	-1

2 C. Question

Sketch the graphs of the following curves on the same scale and the same axes :


$$y = \cos x$$
 and $y = \cos \frac{x}{2}$

Answer

We observe that the functions $y = \cos x$ and $y = \cos (x/2)$ are periodic functions with periods π and π .

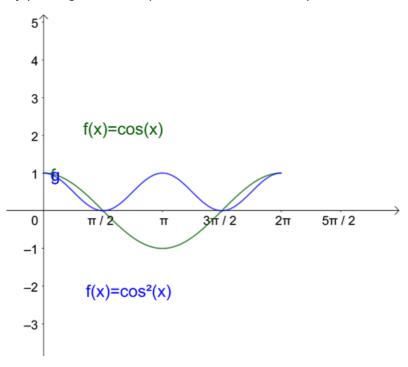
The values of these functions are tabulated below:

Х	0	п/2	п	3п/2	2п
y = cos x	1	0	-1	0	1
y = cos(x/2)	1	1/√2	0	-1/√2	-1
		= 0.7		= -0.7	

2 D. Question

Sketch the graphs of the following curves on the same scale and the same axes :

$$y = cos^2 x$$
 and $y = cos x$


Answer

We observe that the functions $y = \cos^2 x$ and $y = \cos(x)$ are periodic functions with period 2π .

The values of these functions are tabulated below:

2	X	0	п/2	п	3п/2	2п
,	$y = \cos^2 x$	1	0	1	0	1
7	y = cos x	1	0	-1	0	1

By plotting the above points, we obtain the required curve.

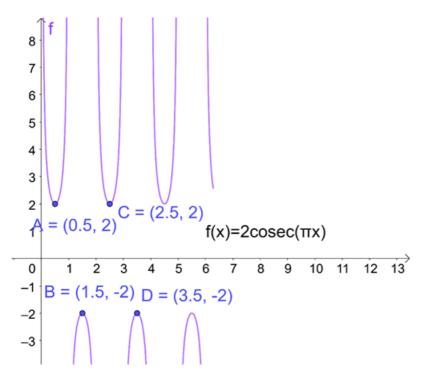
Exercise 6.3

1. Question

Sketch the graphs of the following functions :

$$f(x) = 2 \csc \pi x$$

Answer


We know that $g(x) = \csc x$ is a periodic function with period 2π .

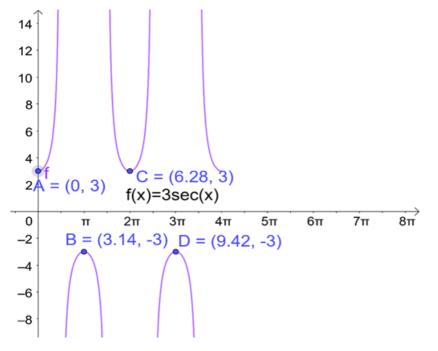
 \therefore f (x) = 2 cosec (π x) is a periodic function with period 2. So, we will draw the graph of f (x) = 2 cosec (π x) in the interval [0, 2]. The values of f (x) = 2 cosec (π x) at various points in [0, 2] are listed in the following table:

X	0	1/2	1	1-	3/2	2-	2	5/2
$f(x) = 2 cosec(\pi x)$	8	2	8	-8	-2	-∞	8	2

2. Question

Sketch the graphs of the following functions :

$$f(x) = 3 \sec x$$


Answer

We know that $g(x) = \sec x$ is a periodic function with period π .

 \therefore f (x) = 3 sec (x) is a periodic function with period π . So, we will draw the graph of f (x) = 3 sec (x) in the interval [0, π]. The values of f (x) = 3 sec (x) at various points in [0, π] are listed in the following table:

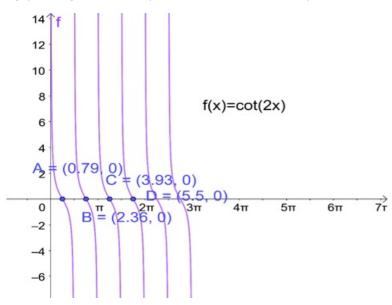
Х	0	п/2	п/2-	п	3п/2-	3п/2	2п	5n/2
$f(x) = 3 \sec(x)$	3	8	-00	-3	-00	8	3	8

By plotting the above points, we obtain the required curve.

3. Question

Sketch the graphs of the following functions:

$$f(x) = \cot 2x$$


Answer

We know that g (x) = cot x is a periodic function with period π .

 \therefore f (x) = cot (2x) is a periodic function with period π . So, we will draw the graph of f (x) = cot (2x) in the interval [0, π]. The values of f (x) = cot (2x) at various points in [0, π] are listed in the following table:

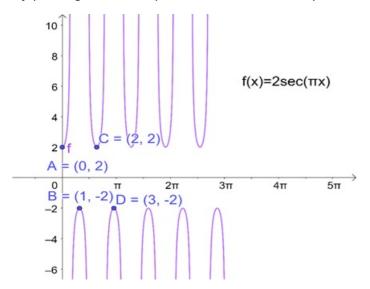
X	0	п/4	п/2-	п/2 +	3п/4	Π-
$f(x) = \cot(2x)$	→ 8	0	-∞	→8	0	-∞

By plotting the above points, we obtain the required curve.

4. Question

Sketch the graphs of the following functions:

$$f(x) = 2 \sec \pi x$$


Answer

We know that g (x) = $\sec x$ is a periodic function with period π .

 \therefore f (x) = 2 sec (π x) is a periodic function with period 1. So, we will draw the graph of f (x) = 2 sec (π x) in the interval [0, 1]. The values of f (x) = 2 sec (π x) at various points in [0, 1] are listed in the following table:

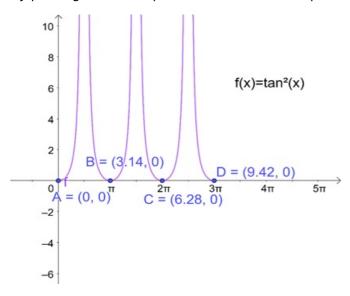
X	0	1/2+	1/2-	1	3/2 -	3/2	2
$f(x) = 3 \sec(x)$	2	8	→-8	-2	-00	8	2

By plotting the above points, we obtain the required curve.

5. Ouestion

Sketch the graphs of the following functions :

$$f(x) = \tan^2 x$$


Answer

We know that $g(x) = \tan x$ is a periodic function with period π .

 \therefore f (x) = tan² (x) is a periodic function with period π . So, we will draw the graph of f (x) = tan² (x) in the interval [0, π]. The values of f (x) = tan² (x) at various points in [0, π] are listed in the following table:

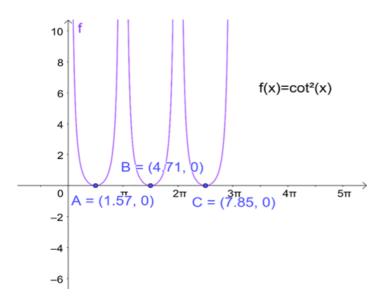
X	0	п/2	п/2	П	3п/2	3п/2	2п
$f(x) = tan^2(x)$	0	oo	→ ∞	0	œ	→ ∞	0

By plotting the above points, we obtain the required curve.

6. Question

Sketch the graphs of the following functions :

$$f(x) = \cot^2 x$$


Answer

We know that $g(x) = \cot x$ is a periodic function with period π .

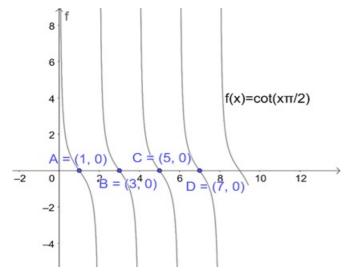
 \therefore f (x) = cot² (x) is a periodic function with period π . So, we will draw the graph of f (x) = cot² (x) in the interval [0, π]. The values of f (x) = cot² (x) at various points in [0, π] are listed in the following table:

Х	0	п/2	П	п	3п/2	2п
$f(x) = \cot^2(x)$	→ ∞	0	8	→ ∞	0	8

7. Question

Sketch the graphs of the following functions :

$$f(x) = \cot \frac{\pi x}{2}$$


Answer

We know that g (x) = cot x is a periodic function with period π .

 \therefore f (x) = cot (π x/2) is a periodic function with period 2. So, we will draw the graph of f (x) = cot (π x/2) in the interval [0, 2]. The values of f (x) = cot (π x/2) at various points in [0, 2] is listed in the following table:

Х	-2	-1	0-	0 +	1	2
$f(x) = \cot(\pi x/2)$	→ ∞	0	→ -∞	→ 8	0	→ -∞

By plotting the above points, we obtain the required curve.

8. Question

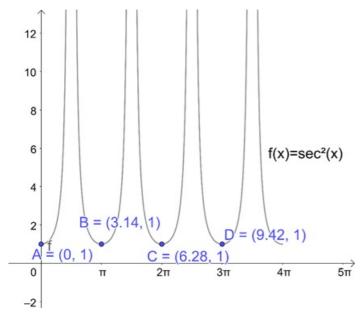
Sketch the graphs of the following functions :

$$f(x) = sec^2 x$$

Answer

We know that $g(x) = \sec x$ is a periodic function with period π .

 \therefore f (x) = sec² (x) is a periodic function with period π . So, we will draw the graph of f (x) = sec² (x) in the interval [0, π]. The values of f (x) = sec² (x) at various points in [0, π] are listed in the following table:



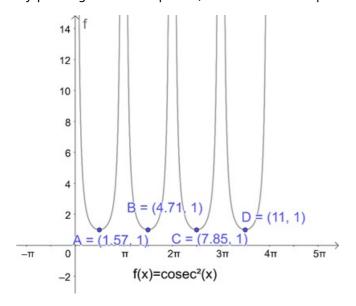
Х	0	п/2	п/2	П	3п/2	3п/2	2п
$f(x) = \sec^2(x)$	1	$\rightarrow \infty$	→-∞	1	$\rightarrow \infty$	→-∞	1

By plotting the above points, we obtain the required curve.

9. Question

Sketch the graphs of the following functions :

$$f(x) = cosec^2 x$$

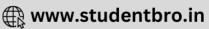

Answer

We know that $g(x) = \csc x$ is a periodic function with period 2π .

 \therefore f (x) = cosec² (x) is a periodic function with period 2π . So, we will draw the graph of f (x) = cosec² (x) in the interval [0, 2π]. The values of f (x) = cosec² (x) at various points in [0, 2π] are listed in the following table:

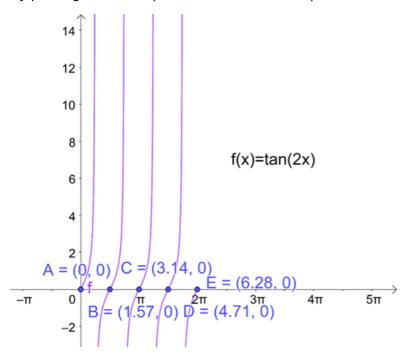
X	0	п/2	П	п	3п/2	2п
$f(x) = cosec^2(x)$	→-∞	1	→8	→-∞	1	→8

By plotting the above points, we obtain the required curve.


10. Question

Sketch the graphs of the following functions:

$$f(x) = \tan 2x$$



Answer

We know that $g(x) = \tan x$ is a periodic function with period π .

 \therefore f (x) = tan (2x) is a periodic function with period $\pi/2$. So, we will draw the graph of f (x) = tan (2x) in the interval [0, $\pi/2$]. The values of f (x) = tan (2x) at various points in [0, $\pi/2$] are listed in the following table:

Х		-3п/4	-п/2	-п /4	-п/4	0	п/4	п/4	п /2	3п/4
f (x) (2x)	= tan	→-∞	0	→ 8	→ -∞	0	→∞	→ -∞	0	→ 8

